Targeted Intracellular Delivery of Resveratrol to Glioblastoma Cells Using Apolipoprotein E-Containing Reconstituted HDL as a Nanovehicle

نویسندگان

  • Sea H. Kim
  • Birendra Babu Adhikari
  • Siobanth Cruz
  • Michael P. Schramm
  • Joe A. Vinson
  • Vasanthy Narayanaswami
  • Yingmei Feng
چکیده

The objective of this study is to transport and deliver resveratrol to intracellular sites using apolipoprotein E3 (apoE3). Reconstituted high-density lipoprotein (rHDL) bearing resveratrol (rHDL/res) was prepared using phospholipids and the low-density lipoprotein receptor (LDLr)-binding domain of apoE3. Biophysical characterization revealed that resveratrol was partitioned into the phospholipid bilayer of discoidal rHDL/res particles (~19 nm diameter). Co-immunoprecipitation studies indicated that the LDLr-binding ability of apoE3 was retained. Cellular uptake of resveratrol to intracellular sites was evaluated in glioblastoma A-172 cells by direct fluorescence using chemically synthesized NBD-labeled resveratrol (res/NBD) embedded in rHDL/res. Competition and inhibition studies indicate that the uptake is by receptor mediated endocytosis via the LDLr, with co-localization of apoE3 and res/NBD in late endosomes/lysosomes. We propose that rHDL provides an ideal hydrophobic milieu to sequester resveratrol and that rHDL containing apoE3 serves as an effective "nanovehicle" to transport and deliver resveratrol to targeted intracellular sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apolipoprotein E3-mediated cellular uptake of reconstituted high-density lipoprotein bearing core 3, 10, or 17 nm hydrophobic gold nanoparticles

We have developed a high-density lipoprotein (HDL)-based platform for transport and delivery of hydrophobic gold nanoparticles (AuNPs). The ability of apolipoprotein E3 (apoE3) to act as a high-affinity ligand for the low-density lipoprotein receptor (LDLr) was exploited to gain entry of HDL with AuNPs into glioblastoma cells. AuNPs of 3, 10, and 17 nm diameter, the latter two synthesized by ph...

متن کامل

O26: Targeted Delivery of siRNA in a Nano-Particle Suppress Glioblastoma Stem Cells

Cancer stem cells (CSCs) are suggested as the most dominant causes of recurrence due to their permanent self-renewal and resistance to common cancer treatment in glioblastoma multiform (GBM) which is recognized as the most malignant of brain tumor. It has been indicated that Retinoblastoma-binding protein 5 (RBBP5), a main part of Mixed lineage leukemia protein-1 (MLL1), plays a significant rol...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E

BACKGROUND The present study takes advantage of the beneficial effects of resveratrol as a neuroprotective compound. Resveratrol-loaded solid lipid nanoparticles were functionalized with apolipoprotein E which can be recognized by the LDL receptors overexpressed on the blood-brain barrier. RESULTS Transmission electron microscopy images revealed spherical nanoparticles, dynamic light scatteri...

متن کامل

Hepatic lipase promotes the uptake of HDL esterified cholesterol by the perfused rat liver: a study using reconstituted HDL particles of defined phospholipid composition.

The role of hepatic triacylglycerol lipase (H-TGL) in promoting the liver uptake of high density lipoprotein (HDL) free and esterified cholesterol was studied in a recirculating rat liver perfusion, a situation where the enzyme is physiologically expressed and is active at the vascular bed. For this purpose, reconstituted HDL of defined phospholipid composition were prepared, containing either ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015